Variety of Hom-Sabinin Algebras and Related Algebra Subclasses
نویسندگان
چکیده
The purpose of this paper is to study Sabinin algebras Hom-type. It shown that Lie, Malcev, Bol and other Hom-type are naturally To end, we provide a general key construction establish relationship between identities some class Hom-algebras ordinary algebras. Moreover, discuss new concept Hom-bialgebra, in relation with universal enveloping Hom-algebras. A based on primitive elements provided.
منابع مشابه
Hom - Algebras and Hom
The aim of this paper is to develop the theory of Hom-coalgebras and related structures. After reviewing some key constructions and examples of quasi-deformations of Lie algebras involving twisted derivations and giving rise to the class of quasi-Lie algebras incorporating Hom-Lie algebras, we describe the notion and some properties of Homalgebras and provide examples. We introduce Hom-coalgebr...
متن کاملHom-alternative Algebras and Hom-jordan Algebras
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra. INTRODUCTION Hom-algebraic structures are algebras where the identities defining the st...
متن کاملHom-algebras and Hom-coalgebras
The aim of this paper is to develop the coalgebra counterpart of the HomAlgebra notions. After reviewing some key constructions and examples of quasi-deformations of Lie algebras involving twisted derivations and giving rise to the class of quasi-Lie algebras incorporating Hom-Lie algebras, we describe the notion and some properties of Homalgebras and provide examples of formal deformations of ...
متن کاملHom-lie Admissible Hom-coalgebras and Hom-hopf Algebras
The aim of this paper is to generalize the concept of Lie-admissible coalgebra introduced in [2] to Hom-coalgebras and to introduce Hom-Hopf algebras with some properties. These structures are based on the Hom-algebra structures introduced in [12].
متن کاملEnveloping Algebras of Hom-lie Algebras
A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map, in which the skew-symmetric bracket satisfies an α-twisted variant of the Jacobi identity, called the Hom-Jacobi identity. When α is the identity map, the Hom-Jacobi identity reduces to the usual Jacobi identity, and L is a Lie algebra. Hom-Lie algebras and related algebras were introduced in [1] to construct deformation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Springer proceedings in mathematics & statistics
سال: 2021
ISSN: ['2194-1009', '2194-1017']
DOI: https://doi.org/10.1007/978-3-030-78346-4_3